Fundamental Theorem of Algebra

A degree $n \geq 1$ polynomial has exactly n roots (possibly complex, possibly with multiplicity greater than 1)

With this we can uniquely factor a polynomial
$P(x)=a_{n} \prod_{i=1}^{k}\left(x-x_{i}\right)^{m_{i}}$
x_{1}, \ldots, x_{k} are the roots, $\sum_{i=1}^{k} m_{i}=n$ is the order of the polynomial, m_{i} is the multiplicity of the i th root

Horner's Method

To evaluate a polynomial at a point more efficiently than just plugging it in (kinda lame)

To compute $P\left(x_{0}\right)$ with $P=a_{n} x^{n}+\cdots a_{0}$ then let
$b_{n}=a_{n}$
$b_{n-1}=a_{n-1}+b_{n} x_{0}$
$b_{n-2}=a_{n-2}+b_{n-1} x_{0}$
\backslash cdots

Then $b_{0}=P\left(x_{0}\right)$ is what we want!

Proof

If Q is the polynomial from the $b_{i}: Q(x)=b_{n} x^{n-1}+\cdots+b_{0}$ then by multiplication: $\left(x-x_{0}\right) Q(x)=$ $P(x)-b_{0}$

Therefore pluggin in $x=x_{0}$, we get $P\left(x_{0}\right)-b_{0}=0$
this leads to something called Synthetic division (which is kinda neat)

Muller's Method

Root finding method. Basically just secant method but uses parabolas instead.
Start with three initial guesses, the four point is by finding the intersection of the parabola with the x -axis (at the nearest point)

